Homework Solutions

Chapter 6 - Page 376

Exercise 32

(a) The base of the triangle is 6 and the area must be 1 . The formula for area is $A=\frac{1}{2} b h$. So we have the equation

$$
\begin{aligned}
A & =\frac{1}{2} b h \\
1 & =\frac{1}{2} \times 6 h \\
1 & =3 h \\
h & =\frac{1}{3} .
\end{aligned}
$$

(b) Symmetric.
(c) Find the area under the graph from 0 to 3 . That is a triangle with base 3 and height half of the total height from part (a), i.e., $h=\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}$. So the area is $A=\frac{1}{2} \times 3 \times \frac{1}{6}=\frac{1}{4}$.
(d) The significance level is the same as α. The direction of extreme is to the left. So α is the area under the null hypothesis from 0 to 1 . That shape is a triangle of base 1 and height $\frac{1}{18}$, so its area is $\frac{1}{36}$.
(e) Use the graph for the alternative hypothesis and find the area from 1 to 6. Add up the values: $A=0.10+0.05+0.05+0.10+0.35=0.65$. Or you could simply compute $1-0.35=0.65$ by removing the leftmost segment.
(f) According to the decision rule in part (d), that value would support H_{0}.

